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MOTIVATIONS: The optimization of a structure and its control system has

traditionally proceeded along two separate but sequential paths. First, the

structure is optimized by selecting a set of member sizes a* which minimize a

structural criterion Js(_), subject to constraints hs(_), Eq (l). Then having

specified the optimal structure, one may use the control theory to determine an

optimal set of control variables u* that optimize a control criterion Jc subject

to constraints hc(_), Eq. (2). This two-step optimization procedure is the

so-called separate optimization and is equivalent to finding the linear sum of two

separate minima, Eq. (3). The question arises then as to whether it is possible to

achieve a superior combined optimum (a**, u**) over (a*, u*) had one combined the

two problems before, Eq. (4), rather than after, Eq. (3), the minimization.

Intuitively, the answer to this question is affirmative, Eq. (5), since the

minimum of the sum is less than the sum of the minima.

• SEPARATE OPTIMIZATION

Js(a*) = min J s (a)
a

hs(a)>o,a-E a

/

J(a*, u*)= Js(a*)+ Jc (a*, u')= rni_ Js + miun~Jc

(1) Jc _*' u*) = min Jc (_*' u) (2)
U

hc (u)>o , u* E u

/

(3)

• SIMULTANEOUS OPTIMIZATION

J(a**, u**) = min [J s(a) + Jc(a, u..)]
~ a,u ~

(4)

J(a'*, u**) _<J (_*, _*) (5)
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DEFINITIONS: A common starting point for most approaches begins with the

second order dynamical equation, Eq. (6), in ns degrees of freedom (d.o.f.). The

_, _, K matrices are the mass, damping, and stiffness. G l : the disturbance

influence matrix, _2 : control influence matrix, _ - structure design variables,

= control variables, w = disturbance vector, and v = physical d.o.f.

Let _ = (_, G)T . state variables, then the equation of state is given by

(7), with output consisting of controlled states z and measured states y, both

related to _ by Eq. (8). Where _A' _l' _2' _I andS2 are defined by Eq. (9).

M(a) _"+ D(a) _ + K(a) v = G 1 w + G 2 u
b

x= (v,_)T

= A(a) x+ B 1 (a) w + B2 (a) u

CONTROLLED STATES z=C 1 x

MEASURED STATES y = C2 x

(6)

(7)

(8)

I ( I ( °A= O I ;BI= 0 :B2=
~ -M'I .M-1D~~ -M-1~ G 1 -M G2

C 1 = (Cl1,C12) ; C2 =(C21,C22) (9)
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FORMULATION: Herein, we focus on LQ-based formulation as a natural one to

generalize to the simultaneous control-structure optimization. Two types of

controllers are considered; state feedback and output feedback. For both of these,

the control criterion Jc Is taken as a quadratic function of the structural

response and control energy, Eq. (lO). For the structural criterion, we assume one

that depends only on the struc_u_i_ Var_ab1_S _' ==_w_become c_ear iater_ this_ .... i

simplifies the derivations considerably. An example of such structural criteria is

the mass of the structure, M(a).

The simultaneous optimization problem consists of finding the structure and

control variables (a**, u_*) that minimize the combined criterion (ll), subject to o

any behavioral constraints (12), and/or side constraints (13) providing upper and/or

lower bounds on the design variables (_, _). Since the terms in (ll) do not have

the same units, the scalar _ and matrices Q and R can be chosen on computational

and physical grounds.

• STATE FEEDBACK

• OUTPUT FEEDBACK

• INDIVIDUAL CRITERIA:

CONTROL:

STRUCTURE:

Jc(a, u) =j_'( xTQx +uTRu)dt
O

Js(_ =M(_

(10)

• COMBINED CRITERION: FIND (_**,u**), a** E _, u** E u

J (a, u) = min [ o¢v1+.f=( xTQx + uTRu)dt]
a,u o

(11)

SUBJECT TO: hj _, uu.)> o (12)

a< a,<_, u<_uj<8- t
(13)
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STATE FEEDBACK: With the assumption that the structural objective M is

dependent upon _ only, Eq. (ll) simplifies to (14) and then to (15). This allows

the familiar analytical solution for the optimal control u** in (18) and its

companion equations (16) and (17). The necessary conditions for the minimum of (15)

subject to the constraint (17) and the constraints imposed by (12) can be derived by

first forming an auxiliary Lagrangian function, then setting its partial derivatives

at the local minimum to zero. This yields conditions (19), (20) and (21), from

which the optimal a_* can be computed iteratively. For a given _, Eqs. (21) and

(22A) are solved for P and P,a" With these, Eq. (19) is solved for an updated a,

and (20) is evaluated to check the constraints.

• J(a,u)= n_n[o_VI(a)+m_n f(xTQx +uTRu)dt] (14)

= n_n[odVI(a)+TF (pQo)] (15)

T
Qo =B_I _B1 IF DIST W IS UNIT IMPULSE

(16)

=Xo xT IF DIST IS INITIAL COND x~(o)= xo

P SATISFIES ATp+ PA +Q-P(B2 R-1BT)p =o (17)

u** = - R -1BTpx (18)

• CONDITIONS OF OPTIMALITY

A

J'a. = °_M'a~. +Tr (PQo' a. +P' a,eo )+_. ,ej jh ,a.=O (19)
i I I I j I

Y..h. =o (20)
J J

ATp+ pA +Q_PB2R-1 TB 2 P=o (21)

T a.- P(B2 R-1BT P+Q'a ]=o (22)AAc P'a. + P, a. Ac +[ A,Ta. P+PA, ) , a. .
I I I I I I

Ac=A-B2R-1BTp
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OUTPUTFEEDBACK:To avoid the state reconstruction necessary to implement the

full state feedback control design, the static output feedback approach requires

only the output of the measured states y. With a controller of the form of Eq.
(22B), in which the gain F is assumedto stabilize the structure, the combined

criterion in (ll) reduces to (23). Equation (23) is similar to its counterpart, Eq.

(15) for the state feedback, except now the output feedback gain _ may be considered
pT(a,F)as an optimization variable in addition to&. Furthermore, _(_,_) =_ _ >0

satisfies the Lyapunov Eq. (24).

Here again, the necessary conditions for the minimum of Eq. (23), subject to

the constraints of Eqs. (24) and (12), can be found by forming the auxiliary

Lagrangian function and setting its partial derlvatiV'es at the local minimum to

zero. This leads to Eqs. (25) to (29), which must be solved iteratively. For a

given (_, _), Eqs. (27), (28) and (29), respectively, allow the solution of _, the

Lagrangian matrix multiplier _ and the scaler Lagrangians _j_O for each behavioral

constraint hj. With these, Eqs. (25) and (26) yield an improved (a, F), and so on.

• ASSUMES u = F Z (F STABILIZES STRUCTURE) (22)B

• FINDMIN.OFJ(a,u) = min [o_M+ Tr(PQo)] (23)
a,F

WHEREP(a, FJSATISFIES ATp+ PAc+Qc = 0 (24)

A c = A + B2 FQ2

Qo =Q_+ c2TFT_RF_C2

CONDITIONS OF OPTIMALITY

o_ M, ai+ Tr[PQ o, ai + 2LPA c, ai+ LQc, ai] + _£ jhj, ai

Tr[2LPAc, F+ LQc, F]+I_ jhj, F = 0

AT p + PAc+ Qc-- 0

-- 0 (25)

(26)

(27)

LATc+AcE+9o=o (28)
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EXAMPLE I: STATE FEEDBACK (Ref. l)

The cantilever beam shown is modeled by three finite elements with

cross-sectional areas & = (al, a2, a3 )T, and has six d.o.f. An initial

deformation vector at the six d.o.f, x(O) = xo is specified, and a control force u

is applied at the free tip. The areas a and control u are to be determined so as to

minimize Eq. (ll) while maintaining a fundamental open-loop frequency _>O.lO

rad/sec. Rather than a first order minimization, it was found necessary for faster

convergence to use a second order scheme based on modified Newton-Raphson

iterations. For this purpose, the design variables & and multiplier £ are

obtained iteratively from the recursive relations in Eq, (30).

L. 15m
I" "1 TM

_. al [

r+l

15m
_4

a 2 a3

V 3

15m

x o = (0.011,0.00135, 0.037, 0.002, 0.0688, 0.00216) T

0) _>0.10 rad/sec. (i,e. h = 0)2 -(0.10) 2 >o)

E = 9.56 101 0N/m 2 , p = 1660 Kg/m 3

DAMPING = 0.5% CRITICAL

{:}
F

-S
[J,aa *:_£jhj,aalhj,a

h. o
J,a_

J'a + Y_.,.,£jh j,_ t

~ j

hj r

(30)
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ALGORITHM: The algorithm begins with a feasible initial design and a step

length s wlth which a line search In the direction of negative gradient is

performed. This is continued until the minimum is reached, or until the constraint

is violated. If the latter occurs, constrained minimization is employed with an

initial estimate of the multiplier _ from

= _[HTH]-IHTo,a :

where H : [hl,_ .... hn, a]

With this Eq. (30) is used. The constraint is checked continually. If the

design moves away from the constraint, unconstrained minimization is reverted to.

Thus the minimization process alternates between iterations which involve

unconstrained minimization and iterations which involve constrained minimization as

outlined below.

EXAMPLE 2: OUTPUT FEEDBACK (Ref. 2)

In this example, an active disturbance force is applied to the free end of the

beam in the figure below. At the other end the beam is pinned and a control torque

is applied there. The measurements consist of angular deformation and angular

velocity at_e'free end. The design variables for minimization are the

cross-sectional areas a: (a l, a2, a3 )T and the gains _= (Fl, ... F4)T. No

behavioral constraints are imposed. Other parameters of the problem are listed

below. Since there areno constraints, the minimization algorithm is essentially

similar to the unconstrained gradient search portion of the algorithm described

previously.

lm

ql,_ u a1 a2

1rn _iW

a 3

E = 800 N/m 2 p : 1O0 Kg/m 3
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EXAMPLE 2 - RESULTS: The numerical results in the table below compare _ and F,

and the resultant mass and combined index J for the initial design and optimized

design. A factor of three reduction in J is realized as a consequence of

simultaneous optimization over _ and _. In the accompanying plots, the transfer

functions of the initial and optimum design from disturbance to the controlled

output show three orders of magnitude reduction in response.

SIMULTANEOUS OPTIMIZATION
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102
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(.9 101

< 001

10-1

10-2

10-3
1

AREAS

GAINS

MASS

A

Jmin

INITIAL DESIGN SIMULTANEOUS OPTIMIZATION

al

0.1

F1

-1.0

30.0

3.06x 10 4

a2 a3

0.1 0.1

F2 F3 F4

-1.0 0.0 0.0

al

0.02308

F1

-0.0306

7.4

9.20x 10 3

a2 a3

0.01654 0.03572

F2 F3 F4

-1.2872 -1.2387 +0.1136
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FREQUENCY (rad/sec)

(a)
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103[--_..L£_ ' ' ''1 .... I .... I '

101L" "_ A -'J

lOo- -2

'
 <1o-2- If

10-3 --

10-4 , , ,L[ • J ,,I , , ,,I • , ,,I , ,,
10-3 10-2 10-1 100 101 102

FREQUENCY (rad/sec)

(b)

FRE(_UENCY RESPONSE OF (a) INITIAL DESIGN AND (B) OPTIMUM DESIGN
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CONCLUDING REMARKS: To show the feasibility of simultaneous optimization as

design procedure, we have used low-order problems in conjunction with simple

control formulations. The numerical results indicate that simultaneous optimization

is not only feasible - but also advantageous. Such advantages come at the expense

of introducing complexities beyond those encountered in structure optimization

alone, or control optimization alone. Examples include: larger design parameter

space, optimization may combine continuous and combinatoric variables, and the

combined objective function may be nonconvex.

Future extensions to include large order problems, more complex objective

functions and constraints, and more sophisticated control formulations will require

further research to ensure that the additional complexities do not outweigh the

advantages of simultaneous optimization. Some areas requiring more efficient tools

than currently available include: multiobjective criteria and nonconvex

optimization. We also need to develop efficient techniques to deal with

optimization over combinatoric and continuous variables, and with truncation issues

for structure and control parameters of both the model space as well as the design

space.

• SIMPLE FORMULATIONS USED WITH LOW-ORDER PROBLEMS

RESULTS SHOW SI_ULTANEOUSOPTiMI_FION FEASIBLE AND ADVANTAGEOUS

- LARGER PARAMETER SPACE• ADDITIONAL COMPLEXITIES:

=

FURTHER EXTENSIONS:

- POSSIBLE NONCONVEXITY OF OBJECTIVE FN.

- MIXTURE OF CONTINUOUS AND COMBINATORIC

VARIABLES

- LARGER PROBLEMS

- OTHER OBJECTIVE FNs, CONSTRAINTS, MORE
SOPHISTICATED CONTROL FORMULATIONS

- MORE EFFICIENT TOOLS TO DEAL WITH ABOVE

COMPLEXITIES

UNIFIED TRUNCATION METHODOLOGY FOR
CONTROL & STRUCTURE PARAMETERS OF
MODEL SPACE & DESIGN SPACE
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